Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(4)2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38396974

RESUMO

Endotoxin, a synonym for lipopolysaccharide (LPS), is anchored in the outer membranes of Gram-negative bacteria. Even minute amounts of LPS entering the circulatory system can have a lethal immunoactivating effect. Since LPS is omnipresent in the environment, it poses a great risk of contaminating any surface or solution, including research products and pharmaceuticals. Therefore, monitoring LPS contamination and taking preventive or decontamination measures to ensure human safety is of the utmost importance. Nevertheless, molecules used for endotoxin detection or inhibition often suffer from interferences, low specificity, and low affinity. For this reason, the selection of new binders that are biocompatible, easy to produce, and that can be used for biopharmaceutical applications, such as endotoxin removal, is of high interest. Powerful techniques for selecting LPS-binding molecules in vitro are display technologies. In this study, we established and compared the selection and production of LPS-specific, monoclonal, human single-chain variable fragments (scFvs) through two display methods: yeast and phage display. After selection, scFvs were fused to a human constant fragment crystallizable (Fc). To evaluate the applicability of the constructs, they were conjugated to polystyrene microbeads. Here, we focused on comparing the functionalized beads and their LPS removal capacity to a polyclonal anti-lipid A bead. Summarized, five different scFvs were selected through phage and yeast display, with binding properties comparable to a commercial polyclonal antibody. Two of the conjugated scFv-Fcs outperformed the polyclonal antibody in terms of the removal of LPS in aqueous solution, resulting in 265 times less residual LPS in solution, demonstrating the potential of display methods to generate LPS-specific binding molecules.


Assuntos
Bacteriófagos , Anticorpos de Cadeia Única , Humanos , Anticorpos Monoclonais , Bacteriófagos/genética , Saccharomyces cerevisiae/metabolismo , Biblioteca de Peptídeos , Endotoxinas , Lipopolissacarídeos
2.
BMC Biotechnol ; 15: 43, 2015 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-26024663

RESUMO

BACKGROUND: Ticks act as vectors for a large number of different pathogens, perhaps most notably Borrelia burgdorferi, the causative agent of Lyme disease. The most prominent tick vector in the United States is the blacklegged tick, Ixodes scapularis. Tick bites are of special public health concern since there are no vaccines available against most tick-transmitted pathogens. Based on the observation that certain non-natural host animals such as guinea pigs or humans can develop adaptive immune responses to tick bites, anti-tick vaccination is a potential approach to tackle health risks associated with tick bites. RESULTS: The aim of this study was to use an oligopeptide phage display strategy to identify immunogenic salivary gland proteins from I. scapularis that are recognized by human immune sera. Oligopeptide libraries were generated from salivary gland mRNA of 18 h fed nymphal I. scapularis. Eight immunogenic oligopeptides were selected using human immune sera. Three selected immunogenic oligopeptides were cloned and produced as recombinant proteins. The immunogenic character of an identified metalloprotease (MP1) was validated with human sera. This enzyme has been described previously and was hypothesized as immunogenic which was confirmed in this study. Interestingly, it also has close homologs in other Ixodes species. CONCLUSION: An immunogenic protein of I. scapularis was identified by oligopeptide phage display. MP1 is a potential candidate for vaccine development.


Assuntos
Imunoglobulina G/imunologia , Ixodes/imunologia , Metaloproteases/imunologia , Biblioteca de Peptídeos , Proteínas e Peptídeos Salivares/genética , Animais , Bacteriófago M13/genética , Humanos , Imunoglobulina G/sangue , Metaloproteases/genética , Oligopeptídeos/genética , Oligopeptídeos/imunologia , RNA Mensageiro/genética , Proteínas e Peptídeos Salivares/imunologia , Estados Unidos , Vacinação
3.
Phytochemistry ; 90: 62-9, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23507362

RESUMO

Cucurbits have been used widely to elucidate gibberellin (GA) biosynthesis. With the recent availability of the genome sequence for the economically important cucurbit Cucumis sativus, sequence data became available for all genes potentially involved in GA biosynthesis for this species. Sixteen cDNAs were cloned from root and shoot of 3-d to 7-d old seedlings and from mature seeds of C. sativus. Two cDNAs code for GA 7-oxidases (CsGA7ox1, and -2), five for GA 20-oxidases (CsGA20ox1, -2, -3, -4, and -5), four for GA 3-oxidases (CsGA3ox1, -2, -3, and -4), and another five for GA 2-oxidases (CsGA2ox1, -2, -3, -4, and -5). Their enzymatic activities were investigated by heterologous expression of the cDNAs in Escherichia coli and incubation of the cell lysates with (14)C-labelled, D2-labelled, or unlabelled GA-substrates. The two GA 7-oxidases converted GA12-aldehyde to GA12 efficiently. CsGA7ox1 converted GA12 to GA14, to 15α-hydroxyGA12, and further to 15α-hydroxyGA14. CsGA7ox2 converted GA12 to its 12α-hydroxylated analogue GA111. All five GA 20-oxidases converted GA12 to GA9 as a major product, and to GA25 as a minor product. The four GA 3-oxidases oxidized the C19-GA GA9 to GA4 as the only product. In addition, three of them (CsGA3ox2, -3, and -4) converted the C20-GA GA12 to GA14. The GA 2-oxidases CsGA2ox1, -2, -3, and -4 oxidized the C19-GAs GA9 and GA4 to GA34 and GA51, respectively. CsGA2ox2, -3, and -4 converted GA51 and GA34 further to respective GA-catabolites. In addition to C19-GAs, CsGA2ox4 also converted the C20-GA GA12 to GA110. In contrast, CsGA2ox5 oxidized only the C20 GA12 to GA110 as the sole product. As shown for CsGA20ox1 and CsGA3ox1, similar reactions were catalysed with 13-hydroxlyated GAs as substrates. It is likely that these enzymes are also responsible for the biosynthesis of 13-hydroxylated GAs in vivo that occur at low levels in cucumber.


Assuntos
Cucumis sativus/enzimologia , Oxigenases de Função Mista/metabolismo , Cucumis sativus/metabolismo , Giberelinas/metabolismo , Proteínas Recombinantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA